Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(11): 6633-6644, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37133412

RESUMO

Pyranones have raised great concerns owing to their considerable applications in a variety of sectors. However, the development of direct asymmetric allylation of 4-hydroxypyran-2-ones is still restricted. Herein, we present an effective iridium-catalyzed asymmetric functionalization technique for the synthesis of 4-hydroxypyran-2-one derivatives over direct and efficient catalytic asymmetric Friedel-Crafts-type allylation by using allyl alcohols. The allylation products could be obtained with good to high yields (up to 96%) and excellent enantioselectivities (>99% ee). Therefore, the disclosed technique provides a new asymmetric synthetic strategy to explore pyranone derivatives in depth, thus providing an interesting approach for global application and further utilization in organic synthesis and pharmaceutical chemistry.

2.
J Thromb Haemost ; 21(3): 667-681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696196

RESUMO

BACKGROUND: The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES: To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS: Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS: GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION: Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbß3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.


Assuntos
Fibrina , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Eptifibatida/farmacologia , Fibrina/química , Glicoproteínas da Membrana de Plaquetas/metabolismo
3.
ACS Med Chem Lett ; 13(2): 171-181, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35178172

RESUMO

The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.

4.
Org Lett ; 23(9): 3426-3431, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848171

RESUMO

Iridium/Brønsted acid cooperative catalyzed asymmetric allylic substitution reactions at the C5 position of indolines have been reported for the first time. The highly efficient protocol allows rapid access to various C5-allylated products in good to high yields (48-97%) and enantioselectivities (82% to >99% ee) with wide functional group tolerance. The transformations allow not only the formation of C5-allylindoline derivatives but also the synthesis of C5-allylindole analogues in good yields and excellent stereoselectivities via an allylation/oxidation reaction sequence.

5.
Arterioscler Thromb Vasc Biol ; 41(3): 1092-1104, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472402

RESUMO

OBJECTIVE: GPVI (glycoprotein VI) is a key molecular player in collagen-induced platelet signaling and aggregation. Recent evidence indicates that it also plays important role in platelet aggregation and thrombus growth through interaction with fibrin(ogen). However, there are discrepancies in the literature regarding whether the monomeric or dimeric form of GPVI binds to fibrinogen at high affinity. The mechanisms of interaction are also not clear, including which region of fibrinogen is responsible for GPVI binding. We aimed to gain further understanding of the mechanisms of interaction at molecular level and to identify the regions on fibrinogen important for GPVI binding. Approach and Results: Using multiple surface- and solution-based protein-protein interaction methods, we observe that dimeric GPVI binds to fibrinogen with much higher affinity and has a slower dissociation rate constant than the monomer due to avidity effects. Moreover, our data show that the highest affinity interaction of GPVI is with the αC-region of fibrinogen. We further show that GPVI interacts with immobilized fibrinogen and fibrin variants at a similar level, including a nonpolymerizing fibrin variant, suggesting that GPVI binding is independent of fibrin polymerization. CONCLUSIONS: Based on the above findings, we conclude that the higher affinity of dimeric GPVI over the monomer for fibrinogen interaction is achieved by avidity. The αC-region of fibrinogen appears essential for GPVI binding. We propose that fibrin polymerization into fibers during coagulation will cluster GPVI through its αC-region, leading to downstream signaling, further activation of platelets, and potentially stimulating clot growth. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Fibrinogênio/metabolismo , Fragmentos de Peptídeos/sangue , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinogênio/química , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Agregação Plaquetária/fisiologia , Glicoproteínas da Membrana de Plaquetas/química , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Transdução de Sinais , Ressonância de Plasmônio de Superfície
6.
Chem Commun (Camb) ; 56(60): 8404-8407, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32578601

RESUMO

A highly efficient direct asymmetric allylic substitution (AAS) reaction of 4-hydroxycoumarin derivatives with branched allylic alcohols was realized by combining a chiral iridium complex catalyst with a Lewis acid under mild reaction conditions, delivering various chiral allylation products in remarkably high yields and excellent enantioselectivities. The salient features of this transformation include mild reaction conditions, general substrate scope, good functional group tolerance, high yields, excellent selectivities and easy scale-up. Furthermore, the obtained products can be readily transformed into several kinds of bioactive compounds.

7.
J Org Chem ; 85(12): 7896-7904, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32466648

RESUMO

A Pd-catalyzed linear selective intermolecular asymmetric dearomative allylic alkylation reaction of naphthols with alkoxyallenes under mild reaction conditions is reported. The transformation is successfully promoted by Pd2(dba)3 and the chiral Trost ligand and provides a general atom-efficient protocol to obtain various ß-naphthalenones bearing an all carbon quaternary stereogenic center in good yields and chemo- and stereoselectivities.

9.
Materials (Basel) ; 12(22)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744241

RESUMO

High-viscosity modified asphalt is mainly used as a binder for porous asphalt in China and Japan. In order to meet the demand for using porous asphalt under high temperature condition in Africa, high-viscosity asphalt made from low-grade matrix asphalt, which is commonly used in Africa is investigated. Based on simulation of local climate in Africa, the suitable range of high viscosity additive content for different matrix asphalt was obtained by analyzing dynamic viscosity of the asphalt. Through PG high temperature grading, multi-stress repeated creep, accelerated fatigue, temperature sweep and other tests, changes of high temperature, anti-fatigue and anti-shear indicators before and after modification were compared and analyzed and effects of different matrix asphalt were also studied. Finally, considering engineering requirements, mixing and compaction temperatures of various high-viscosity modified asphalt were determined through study of viscosity-temperature characteristics. This research provides a support for preparation of high-viscosity modified asphalt and porous asphalt mixture by using low grade asphalt. The research achievements can help to guide the material design and application of porous asphalt in Africa and other high temperature areas.

10.
J Org Chem ; 84(16): 10111-10119, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31343177

RESUMO

An efficient tetrakis(triphenylphosphine)palladium- and Brønsted acid catalyzed allylic substitution reaction of benzothiazolylacetamide with allylic alcohols in water has been developed, and the corresponding allylated products were afforded in good to excellent (up to 99%) yields with high regioselectivities. This straightforward protocol exhibits good functional group tolerance and scalability.

11.
Org Lett ; 21(12): 4428-4432, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31184170

RESUMO

An indium(0)-metal-mediated efficient synthesis of benzylic hydroperoxides is described. The reaction proceeds efficiently with a broad range of benzyl bromides under aerobic conditions at room temperature to afford benzyl hydroperoxides in good to excellent yields. In addition, the tandem hydroperoxidation-Michael addition of ( E)-1-(bromomethyl)-2-(2-nitrovinyl)benzene was also demonstrated.

12.
Platelets ; 30(3): 281-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30110193

RESUMO

GPVI is the major signalling receptor for collagen on platelets. Dimerization of GPVI is required for collagen binding and initiation of signalling through the associated FcR-γ chain. Recently, fibrin and fibrinogen have been identified as ligands for GPVI and shown to induce signalling in support of thrombus formation and stabilization. Contrasting observations have been reported on whether fibrin binds to monomeric or dimeric GPVI, or to neither form. In this article, we discuss reasons for the contradictory results and how to reconcile these. We conclude that a lack of structural knowledge regarding the GPVI constructs that are being used, along with the use of non-standardized reagents, might be the main cause of the discrepant results. This article aims to highlight some of the key areas that need to be addressed.


Assuntos
Plaquetas/metabolismo , Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Humanos , Ligação Proteica
13.
Nucleic Acids Res ; 45(22): 13029-13042, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29069443

RESUMO

The crystal structure of the large terminase from the Geobacillus stearothermophilus bacteriophage D6E shows a unique relative orientation of the N-terminal adenosine triphosphatase (ATPase) and C-terminal nuclease domains. This monomeric 'initiation' state with the two domains 'locked' together is stabilized via a conserved C-terminal arm, which may interact with the portal protein during motor assembly, as predicted for several bacteriophages. Further work supports the formation of an active oligomeric state: (i) AUC data demonstrate the presence of oligomers; (ii) mutational analysis reveals a trans-arginine finger, R158, indispensable for ATP hydrolysis; (iii) the location of this arginine is conserved with the HerA/FtsK ATPase superfamily; (iv) a molecular docking model of the pentamer is compatible with the location of the identified arginine finger. However, this pentameric model is structurally incompatible with the monomeric 'initiation' state and is supported by the observed increase in kcat of ATP hydrolysis, from 7.8 ± 0.1 min-1 to 457.7 ± 9.2 min-1 upon removal of the C-terminal nuclease domain. Taken together, these structural, biophysical and biochemical data suggest a model where transition from the 'initiation' state into a catalytically competent pentameric state, is accompanied by substantial domain rearrangements, triggered by the removal of the C-terminal arm from the ATPase active site.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacteriófagos/enzimologia , Endodesoxirribonucleases/metabolismo , Proteínas Virais/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Cristalografia por Raios X , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Geobacillus stearothermophilus/virologia , Temperatura Alta , Hidrólise , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
14.
Nucleic Acids Res ; 45(6): 3591-3605, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28082398

RESUMO

Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA.


Assuntos
Adenosina Trifosfatases/química , DNA Viral/metabolismo , Endodesoxirribonucleases/química , Proteínas Virais/química , Adenosina Trifosfatases/metabolismo , Bacteriófagos/enzimologia , Bacteriófagos/genética , Sítios de Ligação , Clivagem do DNA , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Domínios Proteicos , Proteínas Virais/metabolismo , Montagem de Vírus
15.
Nucleic Acids Res ; 45(6): 3580-3590, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28100693

RESUMO

Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism.


Assuntos
Endodesoxirribonucleases/química , Metais/química , Proteínas Virais/química , Biocatálise , Domínio Catalítico , Clivagem do DNA , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Genoma Viral , Modelos Moleculares , Recombinases/química , Thermus thermophilus/enzimologia , Proteínas Virais/metabolismo , Montagem de Vírus
16.
Chem Biodivers ; 12(5): 813-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26010668

RESUMO

The synthesis of [(2',5'-dihydrofuran-2-yl)oxy]methyl-phosphonate nucleosides with a 2-substituted adenine base moiety starting from 2-deoxy-3,5-bis-O-(4-methylbenzoyl)-α-L-ribofuranosyl chloride and 2,6-dichloropurine is described. The key step is the regiospecific and stereoselective introduction of a phosphonate synthon at C(2) of the furan ring. None of the synthesized compounds showed significant in vitro activity against HIV, BVDV, and HBV.


Assuntos
Adenina/química , Antivirais/síntese química , Antivirais/farmacologia , Organofosfonatos/química , Organofosfonatos/farmacologia , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Antivirais/química , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Relação Dose-Resposta a Droga , HIV/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Organofosfonatos/síntese química , Nucleosídeos de Purina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...